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Abstract
We consider electrophoresis of a single charged colloidal particle in a finite box with periodic
boundary conditions, where added counterions and salt ions ensure charge neutrality. A
systematic rescaling of the electrokinetic equations allows us to identify a minimum set of
suitable dimensionless parameters, which, within this theoretical framework, determine the
reduced electrophoretic mobility. It turns out that the salt-free case can, on the mean field level,
be described in terms of just three parameters. A fourth parameter, which had previously been
identified on the basis of straightforward dimensional analysis, can only be important beyond
mean field. More complicated behavior is expected to arise when further ionic species are
added. However, for a certain parameter regime, we can demonstrate that the salt-free case can
be mapped onto a corresponding system containing additional salt. The Green–Kubo formula
for the electrophoretic mobility is derived, and its usefulness demonstrated by simulation data.
Finally, we report on finite-element solutions of the electrokinetic equations, using the
commercial software package COMSOL.

1. Introduction

The behavior of charge-stabilized colloidal dispersions in
external electric fields is a classical topic of colloid physics [1].
A quantitative theoretical understanding is still incomplete
today, although substantial progress has been achieved over
the decades [2–9]. The difficulty lies in the complicated
many-body nature of the problem, and hence only limiting
cases are well understood. Beyond the physics of the
‘standard electrokinetic model’ [6], which is essentially
just a single-particle mean field theory (see below), which
nevertheless does describe a quite broad range of phenomena,
current research focuses mainly on situations where this
model is not applicable, or at least its applicability is not
obvious. These include cases where non-mean-field effects
are important, i.e. higher valency or non-negligible size of

the ions [7, 8, 10], or where the single colloid picture is
expected to break down, due to overlapping ionic clouds
(or an insufficient amount of screening by salt) [9]. This
latter issue has also triggered detailed experiments [11–15]
which measured the electrophoretic mobility in the low-salt
regime. Furthermore, the problem has recently been studied
by computer simulations [16–21]. The investigations of [21]
were specifically targeted at the low-salt limit. The purpose of
the present paper is to provide some more detailed theoretical
and numerical background material which had to be omitted
in [21]. We will start in section 2 with a brief review of
the simplest limiting cases of electrophoresis, followed by a
summary of the observations made in [21]. The new material
is then found in sections 3–5 (briefly outlined at the end of
section 2), while we conclude in section 6.
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2. Background: review of limiting cases, and
previous simulation results

2.1. Single colloid without salt

The simplest case of colloidal electrophoresis is obviously a
single charged sphere of radius R and charge Ze (e denotes the
positive elementary charge, and we assume Z > 0), immersed
in a solvent of viscosity η and dielectric constant ε. Assuming
zero salt concentration, and zero colloidal volume fraction �,
the drift velocity �v which results as a response to an external
electric field �E is just given by the Stokes formula,

6πηR�v = Ze �E. (1)

This is the so-called Hückel limit [1, 3]. The
electrophoretic mobility μ of the colloidal sphere, defined via

�v = μ �E, (2)

is hence given by

μ = Ze

6πηR
. (3)

We now introduce the zeta potential as the electrostatic
potential at the colloid surface (with the understanding that it
vanishes infinitely far away from the colloid):

ζ = Ze

4πεR
. (4)

This allows us to re-write (3) as

μ = 2

3

ε

η
ζ. (5)

Based upon the thermal energy kBT as the typical energy
scale (kB denotes Boltzmann’s constant and T the absolute
temperature), we can introduce the dimensionless (reduced)
zeta potential as

ζred = eζ

kBT
. (6)

On the other hand, the thermal energy, combined with
electrostatics, provides a typical length scale, the Bjerrum
length

lB = e2

4πεkBT
, (7)

which is nothing but the distance between two elementary
charges such that their electrostatic energy is just kBT . This
can be combined with the Stokes formula to define a useful
mobility scale for electrokinetic phenomena:

μ0 = e

6πηlB
. (8)

Defining the reduced mobility as

μred = μ

μ0
, (9)

one sees that in the Hückel limit one simply has

μred = ζred. (10)

2.2. Zeta potential versus reduced charge

In a more general context, the electrostatic potential at the
surface of the colloid will of course no longer be given by
(4). It will rather be diminished, as a result of the influence
of the other charges. In order to clearly distinguish between
the concepts of charge and potential, we will call

Z̃ = Ze

4πεR

e

kBT
= Z

lB

R
(11)

the reduced (re-parametrized) charge (regardless of the
physical situation), while the symbols ζ and ζred are reserved
for the actual value of the surface electrostatic potential and its
dimensionless counterpart. In the Hückel limit (and only in this
limit), ζred and Z̃ coincide.

2.3. Screening

An important aspect of electrophoresis is the screening of not
only electrostatic, but also hydrodynamic interactions. As
soon as one considers a system at a finite concentration, one
has to take into account that it must be charge-neutral, at
least on sufficiently large length scales: the charges (colloid
charges plus ion charges) that are contained in a sub-volume of
linear dimension substantially larger than the colloid–colloid
correlation length must add up to zero. The same is true (with
arbitrary precision) in a computer simulation if one considers
the simulation box as a whole (independently of the value of
any correlation length).

Now, the basic mechanism of hydrodynamic screening
is the fact that the external electric field generates
electric currents in both directions, which in turn generate
hydrodynamic flows in both directions. In leading order,
however, these flows cancel, since the total net force acting
on the system (or sub-volume) is exactly zero. As a result,
the flow around a moving charged colloid will not decay
as 1/r (which would hold in the case of sedimentation,
where the system responds to a gravitational field and the net
force does not vanish), but much faster, ∼1/r 3 [22]. The
consequence is, on the one hand, that finite-size effects in
computer simulations are much less severe than in similar
studies of sedimentation [10], and, on the other hand, that
a single-particle picture will apply whenever the electrostatic
interactions are sufficiently screened, as a result of high salt
concentration. Indeed, it is well known that in the high salt
limit the screening of electrostatics [1] is governed by the
Debye length lD = κ−1, where the screening parameter κ is
proportional to the square root of the salt concentration cs:

κ2 = 4πlBcs. (12)

To be precise, (12) assumes monovalent salt ions, and
cs denotes the total number of salt ions per unit volume
(such that the number of ion pairs per unit volume is given
by cs/2). Now, under conditions where lD is substantially
smaller than the typical colloidal interparticle separation, it is
clear that most of the space between the colloids is charge-
neutral. Consequently, these regions are also force-free. In
other words, in these regions there is no net flow, and all
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the hydrodynamic shear gradients and viscous dissipation
processes are confined to the Debye layer as well. In this
situation, one can obviously treat the problem in terms of
a single-particle picture. However, even the problem of a
single sphere surrounded by a charge cloud, with boundary
condition of vanishing electrostatic potential, and finite salt
concentration, for r → ∞, can in general be solved only
numerically. This is the so-called ‘standard electrokinetic
model’ [6]. The reason for the mathematical difficulties is the
nonlinearity of the underlying Poisson–Boltzmann equation,
which determines the ionic cloud structure.

2.4. Smoluchowski limit

A simple analytic solution is however possible in the limit of
very high salt concentration such that lD � R. Here the
geometry is essentially planar, and one obtains the so-called
Smoluchowski limit [1]:

μ = ε

η
ζ ; (13)

however, here the zeta potential is tiny, and in terms of the
reduced charge one has

μred = 3
2 Z̃ (κ R)−1 . (14)

In the limit of infinitely strong screening (κ → ∞), the
salt completely shields the electric field from the particle, and
correspondingly the mobility tends to zero. Of course, this
is only a mathematical limit, which can never be reached in
practice, since at a critical salt concentration the system of
small ions will crystallize. Beyond this critical concentration
the liquid-state Smoluchowski formula cannot work.

2.5. Simulations of the low-salt case

While the case of high salt concentration can thus be
considered as reasonably well understood (albeit in general
only within the framework of numerics), a completely different
situation arises when there is only little salt in the solution, or
even none at all. In this case the ionic clouds are mainly formed
by the counterions, and these will in general overlap. All the
standard screening concepts, which are based upon assuming
a decay of the electrostatic potential and of the charge density,
on a length scale smaller than the colloid–colloid separation,
are no longer expected to work. Nevertheless, namely due to
the weak screening, some simplifying assumptions can still
be made for suspensions of strongly charged colloids. As
the colloids in this regime strongly repel each other, they are
usually well ordered so that their minimal separation amounts
to the mean interparticle distance d ∼ R�−1/3. Thus, the
screening at r < d will be exclusively due to counterions
and the phenomena that happen on this length scale will be
governed by the mean counterion concentration. These ideas
proved to be useful for describing static structure and colloidal
interactions at low salt concentrations [23].

We have studied this case by computer simulations. In
essence, our method is molecular dynamics (MD) for the
charged colloid, the explicit (counter or salt) ions, and the

solvent. However, for computational efficiency the latter
is replaced by a lattice Boltzmann (LB) system which is
coupled to the particles by a Stokes friction coefficient. This
method, which has been designed as an efficient and easy
way of simulating systems with hydrodynamic interactions,
has been described in [24, 25], and is discussed in detail in
a forthcoming review article [26]. Langevin noise is added to
both the particles and the LB system to keep the temperature
constant. The colloid is modeled as a ‘raspberry’ [19, 20], i.e. a
large central particle with a wrapping consisting of a tether of
small particles. The most important results of this study have
been communicated in [21], and can be summarized as follows:

(i) μred is a dimensionless quantity, and hence can only
depend on dimensionless parameters of the system. As
a starting point, we have made no further theoretical
assumptions. In the salt-free case, we can then identify
four such parameters p1, . . . , p4, which we choose in
such a way that two of them resemble most closely those
quantities which have proven useful in the ‘salty’ case:
these are p1 = κ R and p2 = Z̃ (cf (10) and (14)).
In the present case, however, κ is not calculated from
the salt concentration, but rather from the counterion
concentration:

κ2 = 4πlBc, (15)

with

c = N Z

V
= Z

3

4π R3
�, (16)

where V is the system volume, and N the number of
simulated colloids. Obviously, (15) and (16) imply the
relation

(κ R)2 = 3Z̃�; (17)

in other words, κ R is nothing but a re-parametrized
volume fraction. It should be emphasized that due to
assumed strong charge asymmetry between the colloids
and the counterions, which both constitute the screening
medium, the resulting charge distribution is strongly
inhomogeneous and the standard Debye screening concept
cannot be implied. The remaining two scaling variables
are p3 = lB/a and p4 = lB/R, where a is the counterion
radius.

(ii) For a reasonable choice of parameters (lB/R not too large,
and lB/a of order unity, as is typical for ions in water) the
dependence on p3 and p4 can be ignored.

(iii) In terms of Z̃ and κ R, quite good agreement
can be achieved with experiment, provided Z is
replaced by an effective charge, calculated from charge
renormalization [23, 27, 28].

(iv) Finite-size effects are weak, and hence one can obtain the
data for a certain finite volume fraction by just simulating
a single sphere in a suitably chosen finite box.

(v) The effect of added salt is similar to that of increased
volume fraction. It turns out that it is possible, within good
approximation, to just combine these two effects into one
single parameter

κ̄2 = 4πlB (c + cs) , (18)

which has a certain justification within a simplified
linearized Poisson–Boltzmann theory [29].

3



J. Phys.: Condens. Matter 20 (2008) 404214 B Dünweg et al

The purpose of the present paper is to provide a theoretical
background for the observations reported in [21] and derive
some essential relations needed for the further analysis of the
electrophoresis at finite colloidal concentrations. In particular,
we describe our rescaling procedure in more detail. We
feel that this will become particularly transparent when done
in terms of the electrokinetic equations [1], which can be
viewed as the mean field description of the system we have
simulated—in contrast to the simulation, the counterions are
not considered as discrete particles, but rather as concentration
fields. Section 3 thus presents these equations, and outlines the
rescaling procedure. An important result of this analysis is that
the dependence on p4 can indeed be ignored on the level of the
electrokinetic equations—this parameter therefore describes
deviations from mean field behavior, if there are any. Section 4
discusses the problem of linear response, i.e. how to check that
the non-equilibrium simulations employ a sufficiently weak
external field. We have solved this by comparing the results
with control calculations in strict thermal equilibrium, where
the mobility was calculated by Green–Kubo integration. As
far as we know, this formula has not yet been presented in the
literature, and we will derive it here. Finally, in section 5 we
present some data which we have obtained by direct numerical
solution of the electrokinetic equations, using the commercial
finite-element package COMSOL 3.3.

3. Rescaling of the electrokinetic equations

In the stationary state, the electrokinetic equations are given by

∇ · �v = 0, (19)

−∇ p + η∇2�v − e(∇�)
∑

i

zi ci = 0, (20)

∇ ·
(

−Di∇ci − Di

kBT
ezi(∇�)ci + �vci

)
= 0, (21)

∇2� + 1

ε
e
∑

i

zi ci = 0. (22)

Equation (19) is the incompressibility condition for the
velocity field �v, while (20) is the Stokes equation for zero
Reynolds number flow, where the forces resulting from the
hydrostatic pressure p and the viscous dissipation are balanced
against the electric force. Here, � denotes the electrostatic
potential, while ci is the concentration (number of particles
per unit volume) of the i th ionic species. We will adopt
the convention that i = 0 corresponds to the counterions,
while i � 1 denotes various types of salt ions. Each ion
of species i carries a charge zi e. Hence, the total charge
density is given by e

∑
i zi ci ; this term also appears in the

Poisson equation for the electrostatic potential, (22), where
the boundary conditions for � implicitly define the external
driving field. Finally, (21) is the so-called Nernst–Planck
equation (convection–diffusion equation) which describes the
mass conservation of ionic species i . Here Di denotes the
collective diffusion coefficient of species i , while Di/(kBT )

is (via the Einstein relation) the corresponding ionic mobility.
The ionic current consists of three contributions: the diffusion

current, the drift relative to the surrounding solvent, induced by
the electric force density −ezi ci∇� , and finally the convective
current induced by the motion of the fluid.

We now introduce

Mi =
∫

d3�r ci , (23)

the number of ions of species i in the solution, where the
integration extends over the finite volume V of the system.
Obviously, the counterions just compensate the colloid charge,
and hence we have

−z0 M0 = Z; (24)

note that z0 < 0, and we consider only a single colloid in the
volume. Similarly, the charges of the salt ions compensate each
other, and hence ∑

i�1

zi Mi = 0. (25)

In the case without external driving, we have �v = 0, and
the Stokes equation reduces to an equation which determines
the pressure. The Nernst–Planck equation, together with the
Poisson equation, then just becomes the Poisson–Boltzmann
equation:

∇ ln ci + zi∇�̃ = 0, (26)

∇2�̃ + 4πlB

∑

i

zi ci = 0, (27)

where we have introduced the abbreviation

�̃ = e�

kBT
. (28)

In accordance with [29] and (18), we introduce the
parameter

κ̄2 = 4πlB

∑
j z2

j M j

V
, (29)

where however no direct connection to a linearized Poisson–
Boltzmann equation is implied. We now use κ̄−1 as our
elementary unit of length and write

∇ = κ̄∇̃, (30)

which transforms the Poisson equation into a fully non-
dimensional form:

∇̃2�̃ +
∑

i

zi c̃i = 0, (31)

where non-dimensional concentrations c̃i are introduced via

ci = κ̄2

4πlB
c̃i =

∑
j z2

j M j

V
c̃i . (32)

In these scaled variables, the condition of mass
conservation of species i is given by

1

V

∫
d3�r c̃i = Mi∑

j z2
j M j

= fi (33)

(this equation defines the parameters fi ), where
∑

i

z2
i fi = 1. (34)
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κ̄ as a length unit also defines a dimensionless electric field via

�̃E = −∇̃�̃ = e

κ̄kBT
�E, (35)

and a dimensionless velocity ṽ by requiring that the relation
v = μE transforms into ṽ = μred Ẽ :

�v = κ̄kBT

6πηlB
�̃v. (36)

The diffusion coefficients Di can be mapped onto length
scales ai via a Stokes formula:

Di = kBT

6πηai
, (37)

where ai is expected to be similar to the ion radius.
Nevertheless, it should be emphasized that the diffusion
coefficient Di is a collective diffusion coefficient, not a tracer
diffusion coefficient. With these rescalings, the Nernst–Planck
equation reads

∇̃ ·
(

− lB

ai
∇̃ c̃i − lB

ai
zi (∇̃�̃)c̃i + �̃vc̃i

)
= 0. (38)

Finally, we introduce a dimensionless pressure via

p = κ̄2kBT

4πlB
p̃, (39)

to re-write the Stokes equation in dimensionless form

∇̃ · �̃v = 0, (40)

−∇̃ p̃ + 2

3
∇̃2 �̃v − (∇̃�̃)

∑

i

zi c̃i = 0. (41)

Let us collect the final set of non-dimensionalized
equations:

∇̃ · �̃v = 0, (42)

−∇̃ p̃ + 2

3
∇̃2 �̃v − (∇̃�̃)

∑

i

zi c̃i = 0, (43)

∇̃ ·
(

− lB

ai
∇̃ c̃i − lB

ai
zi(∇̃�̃)c̃i + �̃vc̃i

)
= 0, (44)

∇̃2�̃ +
∑

i

zi c̃i = 0. (45)

One sees that the only dimensionless parameters which
remain in the equations are the ratios lB/ai and the charges zi .
Therefore, in order to fully characterize the problem, one needs
to specify three parameters per ionic species (lB/ai , zi , and fi ),
plus the parameters which pertain to the boundary conditions:
the dimensionless colloid radius κ̄ R, the dimensionless box
size κ̄ L (note that we assume a cubic box with periodic
boundary conditions), and the non-dimensionalized charge
density at the colloid surface. For the latter, we note that in
conventional units the surface charge density is given by

σ = Ze

4π R2
, (46)

and that an electric field oriented perpendicular to the surface
will jump by a value σ/ε. The jump in Ẽ is therefore given by
σ̃ = eσ/(κ̄εkBT ), i.e.

σ̃ = Z̃

κ̄ R
. (47)

Furthermore, (17) is straightforwardly generalized in the
multi-ion case to

� = −z0 f0

3Z̃
(κ̄ R)2 ; (48)

this means that specification of f0, Z̃ , and κ̄ R is enough to
know κ̄L.

We can thus summarize: in the case of zero salt and
monovalent counterions, the reduced mobility should be a
function of just the three parameters p1 = κ̄ R, p2 = Z̃ ,
and p3 = lB/a. This result should be contrasted with
straightforward dimensional analysis, which was the basis of
the treatment in [21]. Here one does not assume the validity
of the electrokinetic equations, i.e. the assumption that the
ionic cloud can be treated as a continuum field is not made.
Rather, one starts from the observation that the problem is fully
characterized by the seven parameters kBT , η, L, Z , R, lB, and
a. We then replace η by μ0 (see (8)), L by κ̄ (see (29)), Z by Z̃
(see (11)), and a by lB/a. This results in a new but equivalent
set of parameters kBT , μ0, κ̄ , Z̃ , R, lB, and lB/a. Finally, we
replace lB by lB/R and then R by κ̄ R to find the parameter
set kBT , μ0, κ̄ , Z̃ , κ̄ R, lB/R and lB/a. We are thus left with
seven parameters, of which kBT , μ0, and κ̄ are needed to define
the fundamental units of energy, time, and length, respectively.
Since μred is a dimensionless quantity, it must be a function
of the remaining four dimensionless parameters, which are
p1 = κ̄ R, p2 = Z̃ , p3 = lB/a, and p4 = lB/R. Since
p1, p2 and p3 have also been identified on the basis of mean
field theory (i.e. the electrokinetic equations), we can only
conclude that any non-trivial dependence on p4 must be the
result of deviations from mean field theory, i.e. (most likely)
ion correlation effects. As a matter of fact, the successful
comparison between simulation and experimental data for μred

that was done in [21] exclusively focused on the dependence on
p1 and p2. The justification for this procedure is that (i) p3 is
of order unity both in simulation and experiment, and that (ii)
this implies a moderate strength of electrostatics. This means
that ion correlation effects are expected to be weak, which in
turn means a rather weak dependence on p4, and adequacy of
a description in terms of the electrokinetic equations.

In the case of added salt, there are further parameters
which enter the problem; however, in the degenerate case,
which was simulated in [21] and where all ion types have
the same properties—i.e. all ions are monovalent, and have all
the same mobility or lB/a—there are effectively only two ion
types (the positive and negative ones), and the only additional
scaling variable which enters is f0, which specifies the fraction
of counterions relative to the salt ions. Apparently, μred is only
weakly dependent on f0 over a wide parameter range [21].

In the case of finite salt concentration, we can consider the
limit f0 → 0, which implies � → 0 or L → ∞. In this case,

5
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Figure 1. Reduced electrophoretic mobility of the colloidal particle,
as a function of the colloid volume fraction �. The colloid charge is
Z = 20. The other parameters (in our simulational Lennard-Jones
units) are: η = 2.55, kBT = 1, R = 3 (friction radius of the
‘raspberry’, see text), lB = 1.3, while the coupling of the small
particles to the lattice Boltzmann fluid is characterized by a friction
constant 
 = 20. For further details on the model, see [19, 20]. The
data points are simulation results. The solid curve is the Hückel
formula prediction according to (49).

the present formulation converges towards the situation studied
in the ‘standard electrokinetic model’ [6]. In the case of zero
salt, it is not possible to perform the limit f0 → 0 within our
rescaled formulation, since then κ̄−1 → ∞, and this is not
suitable for a length unit. However, the physics of just a free
colloid is trivial anyway(see section 1).

Figure 1 demonstrates again the general finding that
salt-free systems can, within a reasonable approximation, be
mapped onto the corresponding ‘salty’ system with the same
Z̃ and κ̄ R. For a dispersion with charge Z = 20, we compare
the simulation data for μred, as a function of colloid volume
fraction �, with the theoretical prediction that results from this
mapping. Since it turns out that in the simulated regime of
volume fractions κ̄ R < 1, it is reasonable to assume that the
Hückel formula [1] holds:

μred = Z̃eff

1 + κ̄ R
= Z̃eff

1 + (3Z̃eff�)1/2
. (49)

Here the factor (1 + κ̄ R)−1 takes into account the
reduction of the surface potential, within the Debye–Hückel
approximation, while Zeff was calculated via the charge
renormalization procedure by Alexander et al [27], based upon
the Poisson–Boltzmann cell model. A complication arises
from the fact that our ‘raspberry model’ effectively defines
two radii: on the one hand, the particles on the surface tether
have a distance R1 (here: R1 = 3 in our Lennard-Jones units)
from the colloid center. Since the tethered particles are those
that couple frictionally to the lattice Boltzmann fluid, this is
the hydrodynamic radius of the sphere. On the other hand,
the minimum distance between the ions and the colloid center
is one ion diameter larger, due to the repulsive interaction
between tether particles and ions. This defines R2 = 4. It
therefore makes sense to calculate the volume fraction and the
κ̄ R parameter on the basis of R2, and to also use it in the charge
renormalization procedure. However, in the transformation

from Zeff to Z̃eff = ZefflB/R, we used R1, in order to obtain
the correct Stokes radius in the limit κ̄ → 0. This procedure
yields good agreement between simulation and theory, as seen
from figure 1. For the simulated � values, Zeff varies between
16.2 and 18.4.

4. Linear response

In this section, we will derive the Green–Kubo formula for the
electrophoretic mobility, which allows us to determine μ from
pure equilibrium simulations. To our knowledge, the formula
has so far not been presented explicitly in the literature;
however, the derivation is very straightforward within the
framework of standard linear response theory. We follow the
approach of [30], which we find particularly transparent.

The starting point is the Hamiltonian

H(
, t) = H0(
) + H′(
, t) = H0(
) − f (t)B(
), (50)

where H0 describes the unperturbed system, and f (t) is a
weak external time-dependent field, which couples linearly to
a dynamical variable B . 
 denotes the phase-space variable.
We are interested in the dynamic linear response of a variable
A. The time dependence of the mean value of A, A(t), must,
for reasons of linearity and time translational invariance, have
the form

A(t) = 〈A〉 +
∫ ∞

0
dτχAB(τ ) f (t − τ ), (51)

where 〈. . .〉 denotes the thermal average in the absence of
perturbations. The dynamic susceptibility χAB is defined in
such a way that it is zero for negative arguments; this permits
extension of the integration range in (51) to (−∞,+∞).

For the special case that f (t) is a constant f0 for −∞ <

t < 0, and zero from then on, one has, for t > 0,

A(t) = 〈A〉 + f0

∫ ∞

t
dτχAB(τ ), (52)

or
d

dt
A(t) = − f0χAB(t). (53)

On the other hand, the statistical-mechanical expression
for A(t) in such a ‘switch-off experiment’ is

A(t) =
∫

d
 exp (−βH0 + β f0 B) A(t)∫
d
 exp (−βH0 + β f0 B)

, (54)

where β = 1/(kBT ), A(t) denotes the time evolution
of A under the influence of H0 only, and the Boltzmann
factor describes the averaging over the initial conditions,
which are distributed according to the perturbed Hamiltonian.
Linearizing this expression with respect to f0 for weak
perturbations yields

A(t) = f0β (〈B(0)A(t)〉 − 〈B〉 〈A〉) (55)

or
d

dt
A(t) = f0β

〈
B(0) Ȧ(t)

〉
. (56)
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Comparing this with (53) yields the correlation-function
expression for the dynamic susceptibility:

χAB(t) = −β
〈
B(0) Ȧ(t)

〉
(57)

for t > 0. Translational invariance with respect to time implies

0 = d

dt
〈B(t + τ )A(t)〉 = 〈

Ḃ(t + τ )A(t)
〉 + 〈

B(t + τ ) Ȧ(t)
〉
,

(58)
from which one concludes, by setting τ = −t , the alternative
(and more useful) representation

χAB(t) = β
〈
Ḃ(0)A(t)

〉
. (59)

Considering the case that the external perturbation is
completely independent of time, and that A settles to a constant
value, one thus finds from (51) and (59)

A = 〈A〉 + f0β

∫ ∞

0
dt

〈
Ḃ(0)A(t)

〉
. (60)

For the problem of electrophoresis, we consider a set of
particles i with charges zi e at positions �ri , in an electric field
�E = Eêx . The perturbation Hamiltonian is thus given by

H′ = −Ee
∑

i

zi xi , (61)

i.e. f0 = E and B = e
∑

i zi xi . Denoting the velocity of the
i th particle in x direction with vi x , we thus find

Ḃ = e
∑

i

zivi x . (62)

On the other hand, we are interested in the velocity
response of one particular particle (say, i = 0), i.e.

A = v0x , (63)

with 〈A〉 = 0. This yields directly the desired Green–Kubo
formula for the electrophoretic mobility

μ = 1

3

e

kBT

∑

i

zi

∫ ∞

0
dt 〈�vi (0) · �v0(t)〉 , (64)

where we have averaged over the three spatial directions.
It should be noticed that the formula involves a mixed
correlation between the test particle and all charges, in
contrast to the tracer diffusion coefficient, which contains
only the autocorrelation of the test particle, and the electric
conductivity, which involves the autocorrelation of the
collective current.

As an example, we present figure 2, where the reduced
mobility for a salt-free system is plotted as a function of
colloidal charge. Comparison with the Green–Kubo integral
makes it possible to check whether data obtained under non-
equilibrium conditions are still within the linear regime or not.
One sees that the mobility first increases with the charge (as
one would expect from the physics of the free colloid), but
then saturates at a finite value, as a result of condensation of
more and more counterions. The nonlinear effects observed
for stronger electric fields are mainly due to charge–cloud
stripping [20], which increases the effective charge and thus
the mobility.

0

1

2

3

4

5

6

Z
0 20 40 60 80 100 120

Figure 2. Reduced electrophoretic mobility of the colloidal particle,
as a function of its charge Z . No salt is added, and, apart from the
central colloid, the system comprises Z monovalent counterions. The
linear box size is L = 30. The other simulation parameters are the
same as those given in figure 1. The mobility was here defined just as
the ratio between drift velocity and electric field. For strong driving
field E , one observes nonlinear effects, while the results for weak
driving agree favorably with the results of Green–Kubo integration
(GKI). Note that the driving field is here given in the Lennard-Jones
unit system of the simulation. According to (35), constant E does not
imply constant Ẽ , since κ̄ varies with Z .

(This figure is in colour only in the electronic version)

5. Finite-element calculations

As a complementary approach to the hybrid MD/LB
simulations, we have also done some calculations where
we solved the electrokinetic equations directly, using a
commercial finite-element software package (COMSOL 3.3).
For highly charged systems, where rather fine grids are
necessary, this does not work particularly well, since quite
generally the software tends to need excessive amounts of
memory. We used the same geometry as in the simulations,
with the colloidal sphere centered in the cubic box, but
confined, for simplicity, the computational domain to just
the space outside the colloidal sphere. This is not entirely
correct, since, in reality, the electric field also exists inside the
sphere, where it takes a non-trivial configuration, as a result
of the external driving field oriented in the x direction, the
deformed charge cloud, and the cubic anisotropy. However,
if we assume that we can neglect the latter, and consider
the limit of infinitesimal driving, we get an electric field at
the colloid surface whose orientation is strictly radial, and
whose value is given by Gauss’ law. This corresponds to
the specification of Neumann boundary conditions for the
normal component of the electric field. On the surface of
the box, we specified Neumann boundary conditions as well,
where the normal component was set to zero in the planes
perpendicular to y and z, while on the planes perpendicular
to x it was set equal to the driving field. Concentration and
flow field were subjected to periodic boundary conditions.
The pressure and the electrostatic potential were set to zero
at some arbitrary point in the domain, in order to lift the
degeneracy of shifting these functions by an arbitrary amount.
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Figure 3. Reduced mobility as a function of electric field Ẽ , for
parameters chosen in accordance with those of figure 2, for charge
Z = 60. Note that the electric field is given here in reduced units
(see (35)), i.e. a value of Ẽ = 1 in the present plot corresponds to
eE ≈ 0.2 in the Lennard-Jones units of figure 2.

The Nernst–Planck equation was augmented by a zero-flux
condition at the colloid surface, and an integral constraint in
order to guarantee charge neutrality (such integral constraints
turn out to be computationally particularly cumbersome). The
flow velocity at the colloid surface was set to zero, and the
particle velocity was finally determined by transforming back
into the system’s center-of-mass reference frame. Given the
inaccuracies of the boundary conditions, these results should
not be viewed as a stringent test of the validity of the mean
field picture for the simulated system. Nevertheless, the results
agree reasonably: figure 3 shows the reduced mobility as a
function of the external driving field, for a situation which
corresponds to the parameters of figure 2 at charge Z = 60. In
the future, we hope to be able to calculate reduced mobilities in
the low-salt limit more easily by self-written software; efforts
to develop such a program are currently under way.

6. Summary

In this paper we developed a theoretical basis for the scaling
analysis of the colloidal electrophoresis problem in the case
of finite colloidal concentrations. The rescaling procedure
and characterization of the dispersion in terms of effective
dimensionless parameters, i. e. the reduced colloid charge,
and the ratio of screening length and size, allows one to
map the numerical results obtained for a single colloid onto
experimental data for finite colloidal volume fractions and
no added salt. At least for a certain parameter regime,
we can also map the salt-free case onto a corresponding
system containing additional salt. Moreover, we presented
a numerically convenient method of measuring the colloidal
electrophoretic mobility based on the Green–Kubo analysis
of the equilibrium fluctuations of the charge motions. This
allows for pure equilibrium simulations and ensures that one
always measures the mobility and ion distributions in the
linear response regime. Finally, we gave an example of using

a finite-element commercial software package for solving
the electrokinetic equations numerically, yielding reasonable
agreement with the simulations, and suggesting at least
consistency of the mean field picture with our simulations.
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